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Introduction.

If a gas is enclosed in two vessels communicating with 
each other by a tube, the gas will, as known, be in 

equilibrium if its pressure is of the same magnitude through
out. True, this condition of equilibrium only holds good 
if we disregard the differences in pressure produced by 
the effect of gravity. This we will do in the following. If 
the two vessels are given a different temperature, the con
dition of equilibrium will still hold good in many cases, 
even if the temperature is varied through the communi
cation tube, and this fact is made use of, e. g. in the gas 
thermometer, it being a well-known fact that the gas in 
the manometer may have a temperature quite different 
from the gas in the thermometer bulb.

If, however, we employ the word equilibrium as a term 
for the state in which the amounts of the masses of gas 
found in the two vessels do not change any more if the 
temperature of the vessels remains unchanged, the con
dition of equilibrium mentioned may in certain cases be
come quite wrong. This was already shown by O. Rey
nolds1, who by means of the kinetic theory derives the 
equation ( as valid in the case of pL and Tr

Pz 2/
being pressure and temperature respectively on one side 
of a porous plate, while jo2 and T2 are the corresponding

O. Reynolds, Phil. Trans, p. 727, London 1879. 

1*
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quantities on the other side of the plate. Putting pt = p.2 
and 7\ different from T2 the gas will not be in equilibrium, 
there will be a flow of gas through the plate from the 
cold to the warm side. This flow of gas which Reynolds 
called “thermical transpiration’’ was demonstrated experi
mentally by Reynolds himself in experiments with plates 
of gypsum and meerschaum. The temperatures Tt and T.2 
were not, however, measured directly, so that Reynolds 
did not obtain a numerical confirmation of the equation 
given above. Such a confirmation I have achieved by means 
of a glass tube in which a magnesia plug had been firmly 
fixed, and the thermical transpiration was demonstrated in 
the following way.

I used a vessel holding from Vs to 1 litre, and which 
was made of porous porcelain (a filtration bulb). The neck 
was closed with a rubber-stopper through which was 
passed a glass tube ending under a water surface. The 
gas in the bulb was heated by an electric current sent 
through a coil placed inside the bulb. The walls of the 
bulb being thus heated from the inside, and continually 
cooled on the outer side, a fall of temperature will take 
place in the porous wall, and this will cause gas to be 
sucked through the wall into the bulb. Gas bubbles will 
then rise through the surface of the water so that, in the 
course of a few minutes, more gas can be collected than 
the porous vessel holds. It will be noted too that the flow 
of gas will continue with constant velocity as long as the 
temperatures on the inner and outer sides of the walls 
are kept constant, and that the velocity increases when 
the heating current is increased or the cooling velocity of 
the bulb is augmented by blowing cold air on to it.

The condition of equilibrium stated by Reynolds is, 
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however, only valid when the effect of the collision of the 
molecules with each other as compared with the number 
of the impacts with the tube walls may be disregarded, 
or, in other words, when the cross-section dimensions of 
the tube are negligible compared with the mean free path Â 
of the gas molecules. For a cylindrical tube with the 

rradius r the quantity - must thus be negligible compared 

with 1 if Reynolds’ formula is to hold good.
If z is negligible compared with r, the condition of 

equilibrium will, as known, be that the pressure is the 
same throughout the whole system whatever is the distri
bution of the temperature.

The case when Â is small but not negligible compared 
with r has been theoretically dealt with by Maxwell1 
who made use of the results of Kundt and Warburg’s 
experiments on the slipping of the gases. By a consider
ation which I have formerly2 explained I have arrived at 
a relation which formally agrees perfectly with Maxwell’s. 
The constants found by me deviate somewhat from those 
found by Maxwell. A series of experiments previously made 
by me shows that the formulas in question are formally 
right, but that the constants found by experiments are 
again somewhat different from the theoretical ones, which 
is easily explained.

The theoretically found formula corroborated by experi
ment may be written as follows :

A2-pa2 = C(G2-7V-),

where and 7\ are the pressure and absolute temperature 
in one vessel, p2 and 72 the corresponding quantities in

1 J. Clerk Maxwell, Phil. Trans, p. 231, London 1879.
2 Martin Knudsen, Ann. d. Phys. Bd. 31, p. 214, 1910. 
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the other, while c is dependent on the radius of the tube 
and the mean free path 2t of the gas at a pressure of 1 bar. 
It may be expected too that c will in some degree he de
pendent on the temperature. For the cases when r is 
either negligible or very large compared with Z we have 
neither theoretical nor experimental investigations of the 
relation between p and T, yet a knowledge of this relation 
may be of great importance e. g. when the gas thermo
meter is to be used to measure the lowest temperatures 
that can now he produced.

In the following I shall give an account of a series of 
experiments performed by me for the purpose of learning 
more of this relation.

Experiments with the Gas Thermometer.
To solve the problem mentioned above I have tried 

using a gas thermometer and carrying out measurements
at constant pressure 
and varying volume. 
The glass apparatus 
is sketched in lig. 1. 
The volume V of the 
thermometer tube 

was measured, and 
likewise the radius r 
of the communica
tion tube to the hot
wire manometer M, 

a sr

and the volume i u of a pipette continued at the bottom 
in a graduated tube closed with mercury. H is a stop-cock 
through which hydrogen is introduced into the apparatus 
until the desired pressure is obtained.
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Let us suppose that the whole apparatus has the abso
lute temperature TL and that the pipette is filled with 
mercury up to the mark a. There will then be the same 
pressure p{ throughout the apparatus. Now the vessel F is 
heated to the temperature T2 while the remaining part of 
the apparatus is kept at the temperature 7\. The mercury 
is made to sink in the pipette until the manometer again 
shows the initial pressure pL. If the volume of the mano
meter and communication tube be designated p, and the 
new pressure in the heated vessel j>2, the expression for 
the constancy of the mass of gas gives that

PiV , Pi” = PiV , PiP , P\Jv
T, T2 1\ 7\

from which we get that

p2 = __4»\

Pi tS vj’

Here p.2 and designate the pressures in the communication 
tube with the radius r in the state of equilibrium in those 
places where the temperatures are T2 and 7\ respectively, 
and and all quantities on the right side of the sign of 
equation being measured, the equation gives the sought 
relation between p2 and pt.

We know that for large values of the pressure, that is 
to say abt. 1 cm. mercury pressure, we ought to find p2 — pr, 
and that for small values of the pressure, that is to say 

r
small values of y, we ought to find small deviations from 

the equation The first of these requirements

was fairly well satisfied, which showed that the errors of 
observation were small. But from the second equation such 
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great deviations appeared that the method must be con
sidered unsuitable.

The reason for this is that in each measurement great 
accuracy in the determination both of temperatures and 
volumes must be demanded, but of decisive importance 
are the adsorption phenomena that manifest themselves 
vigorously at lower pressures. This source of error I have 
not been able to eliminate, and my experiments seem to 
me to have shown that the gas thermometer is not suited 
for temperature measurements when the gas pressure in 
the vessel must necessarily be very low. Heating of the 
thermometer bulb and the use of Geräte glass somewhat 
reduced the error, though far from sufficiently.

Plan of the Experimental Investigation.
The method used for the final series of measurements 

was the following.
M (fig. 2) is a hot-wire manometer as previously de

scribed1. By a series of glass tubes of unequal widths the

manometer is connected with a large glass vessel the volume 
of which has been measured to be Vo. The widest tubes

1 Martin Knudsen: Det Kgl. Danske Videnskabernes Selskab. Mathe- 
matisk-fysiske Meddelelser VII, 15, 1927.
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in the system have a radius of abt. 1 mm. The two pieces 
of tubing marked R in the figure have equal radii:

R = 0.099655 cm.

and the two pieces of tubing marked r have equal radii, viz. 

r — 0.026845 cm.

These four pieces of tubing were as circularly cylindrical 
as they could be found in a large collection of tubes. Their 
upper joints, which during the experiments should have 
the same temperature, were surrounded by a rather large 
water bath, K, contained in a rectangular copper box. The 
vessel with the volume Vo, abt. 1.2 litres, was likewise 
placed in a water bath the walls of which were well in
sulating for heat. Y is a pipette, the gauge vessel, placed 
in a water bath. It may be filled with and emptied of 
mercury through the tube at the bottom, and it serves to 
calibrate the hot-wire manometer, its volume between the 
marks being measured to 8.8746 cm3. F is a trap which 
is kept in liquid air during the experiments, and L is a 
mercury seal with a ground glass float which can shut 
off the apparatus from the pipette system serving to intro
duce a gas of known pressure into the apparatus. The 
glass float very effectually prevents the penetration of mer
cury vapours into the apparatus, and the tube below the 
small gauge vessel is very narrow, so that by this way 
too the entrance of mercury vapours will be negligible.

During the first measurement on the potentiometer the 
two joints between the tubes R and r are placed each in 
a separate bath, the temperatures of which are measured 
or known. Thereupon the two baths are interchanged and 
a second measurement is made. From the two measure
ments the ratio between the two pressures may be found.
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Let tig. 3 be a circularly cylindrical tube closed at both 
ends. Let the radius of the tube be r and let one end of 
it have the absolute temperature 7\, the other 72. In the 

state of equilibrium the 
pressures of the gas con
tained in the tube will be 
different at the two ends. 
If they be designated /q 

and p2, as indicated in the figure, — p2, i. e. the quantity 
which I term the thermal molecular pressure will differ 
from 0 when 7\—T2 does so.

We may know beforehand that the thermal molecular 
pressure must be a very complicated function of the 
temperature, the pressure, and the radius of the tube, 
therefore I have considered it advisable to make a series 
of measurements at such small temperature differences 
that pt—p2 may with sufficient approximation be put pro
portional to Tx—T2 at all pressures. Hence for the tube 
with the radius r we put pt—p2 = f(l\—T2), and for 
the tube with the radius R we put /q— p2 = F (Tt—T.^, 
on the assumption that the mean pressures in the two 
lubes may with approximation be put equal.

With the designations of pressures and temperatures 
given in fig. 2 we may then note the following set of 
equations:

l\~P« =
P'-P, = PCPo-T,) 
p3-p2 = f(7’2-t„) 
p4-p2= /-(r0-r2) 
p -p4 = f(t3-t0)

If now we interchange the two baths whose temperatures 
were designated 7\ and 72, the pressures will change 
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throughout except in the large vessel Vo, for compared to 
its volume the rest of the volumes are negligible. If the 
new pressures are designated p with the same indices 
which P had before, we shall get the following set of 
equations :

Pi~Po= f^—To) 
P2—P1 = fcTq — t^) 

P2 — P2 = FCTi-To) 
P4 — P2 = fCT^-Ti) 
P —Pt= FCT^—Tq)

If the two sets of equations are added separately, we gel:

P~Po = F(T2-T1) + /-(T1-r2) + F(T3-7’0) 
P Po == F(7\ T>) + f(T% 7j) +P (T3 Fq) ,

from which by subtraction

1(p-p) = (/■_F)(rt-r2)

and hence, - (P— p) being designated by Jp and 7\—72

The quantity f may be characterised as being equal to 
4^ in the tube with the radius r, while F is equal to —, 
a I d 1
in the tube with radius R, in which the pressure is very 
nearly equal to that in the first-mentioned tube.

In the series of experiments in question in which F 
and f Niere determined, the temperatures (7’0— 273°) of 
the water baths were kept at 20 centigrade. was kept 
at the temperature of melting ice, the bath consisting of 
scraped ice in a Dewar vessel. 72 was kept 40 higher by 
a water hath which was continually stirred by a current 
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of air, while the loss of heat to the surroundings was 
compensated hy electric healing. The temperature of this 
bath was read on a mercury thermometer graded Vio and 
bent in an angle so that it could be placed under the 
copper box K. The two baths were both placed on a re
volving stand, so that they could be easily and quickly 
interchanged.

The temperature of the manometer was throughout that 
of melting ice, but as will be seen, neither this temperature 
nor To, that of the water baths, enters into the equation 
by which f— F is determined. Besides this the method 
further presents the advantage that the volumes changing 
temperatures are not altered by the interchange, and thus 
changes in pressure caused by Gay-Lussac’s expansion are 
avoided. Finally, what is most essential is that the areas of 
the glass surfaces subjected to the changes in temperature 
is here reduced to a minimum of abt. 8 cm2. For it is only 
in the comparatively narrow and short pieces of tubing 
that the temperature changes cause the harmful adsorption 
phenomena.

Example of a Measurement.
All measurements were, in all essentials, made in the 

same manner, so we shall here only describe one chosen 
at random from the entire material.

The whole apparatus with pipette system and mercury 
manometer was exhausted by means of a mercury diffusion 
pump. Between this and the apparatus was inserted a trap 
cooled in liquid air. When after pumping for a short time 
the apparatus was almost devoid of air, electric heating 
coils were placed round each of the bends of the tubes 
under the copper box. Thus these tubes were baked out,
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being kept heated to a temperature of abt. 330° centigrade 
for 10—12 hours while the pump was at work now and 
then. This heating was intended to diminish the harmful 
adsorption effects, and was to some extent successful, 
though unfortunately not absolutely. The tubes used were 
of good Thüring glass, an experiment with Geräte glass 
and Pyrex glass having shown that these kinds did not 
present such advantages that it would be profitable to use 
them.

When the heating was finished and also the exhaustion, 
the result of which was followed on the hot wire mano
meter and in some cases on an absolute manometer, 
hydrogen was brought into the apparatus. This hydrogen 
was taken from a steel receptacle and had been tested 
and proved sufficiently pure. It was dried by passing 
through a trap cooled in liquid air. Its influx could be so 
accurately regulated that the desired pressure in the mer
cury manometer could be produced with great approxim
ation. In the experiment to be described here the reading 
on the mercury manometer was 21.514 cm. mercury pres
sure at 20°. By means of the pipette system a fraction 
hereof was introduced into the apparatus, liquid air being 
placed round the trap F (fig. 2). From the known volumes 
of the pipette system and the apparatus the pressure in 
the apparatus was found to be 718.6 bar. The mercury 
seal L (fig. 2) was closed, and a water bath of 20° centi
grade placed round both bends of the tubes, r and /?.

The resistance of the manometer wire was 743.3 ohms 
at 0 . Wheatstone’s bridge was adjusted so that there would 
be no current in its galvanometer when the wire was 
heated so much that its resistance would be 900 ohms. 
The mean temperature of the wire is then abt. 60° centi- 
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grade. The potentiometer whose total resistance was 11000 
ohms was shunted with a resistance of 310 ohms in order 
to obtain a suitably large reading (between 9000 and 
10000 ohms). This is of importance for the interpolation 
which is made by measuring the deflection of the galvano
meter mirror caused by a change of 1 ohm in the potentio
meter.

The table below shows a column indicating the hour 
when the measurements were made. The next two columns 
show the temperatures tt and /2 in degrees centigrade of 
the baths surrounding the bends of the tubes, and under

finally, are given the readings on the potentiomete

Time h ^2 Comp.

llh45 20° 20° 9656,97
57 40°,63 0° 9745,47

12h10 0° 40°,40 9568,88
23 40°,58 0° 9745,10
35 20° 20° 9656,32
47 0° 40°,54 9568,60
59 40°,40 0° 9744,32

lhl 1 0° 40°,20 9568,92
24 20° 20° 9655,14

From this series it will be seen that the measurements 
were made at very nearly equal intervals of time. This 
was done on account of the adsorption effects. Between 
the measurements are interposed some with both bends 
of the tubes at the same temperature 20° so as to follow 
the slow changes of pressure in the apparatus. It was as 
far as possible attempted to do away with these by grouping 
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the measurements three and three together as shown in 
the table.

By taking means the table is reduced to the following two

tX ^2 Comp. z/ Comp. = /I Comp.
Mean values 

z/ Comp.Lomp.^-Gomp.^ t1 — tz20 1 ù 6 ^2
20° 20° 9656,65
40°,61 0° 9745,29 + 88,64 2,1827

2,1776
0° 40°,40 9568,88 — 87,77 2,1725

20° 20° 9655,73
40°,40 0° 9744,32 — 88,59 2,1928

2,1736
0° 40°,37 9568,76 -86,97 2,1543

The two measurements made independently of each other, 
and which were almost independent of the measurements 
at 20°, 20°, have thus given the following values for^ on^P^ 

'i '2
2.1776 and 2.1736, hence the mean value, tt — t2 being de
signated by J T.

— 2.1756 = Measurement.

In connection with these measurements gaugings were 
made, as a rule two, one before and the other after the 
measurements at different temperatures had been made. 
During the gauging measurements the bends of the lubes 
were kept at the same temperature abt. 20 , both bends 
being placed in a single large water bath. In connection 
with the above-mentioned measurements the following 
gauge-measurements were made, partly with the gauge 
vessel T empty (fig. 2) partly when it was filled with 
mercury
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Y empty 
F full . .
y empty 

Comp.

9655,14
9622,79
9655,00

Comp.
(empty-full)

32,28

y empty  9650,49
y full  9618,04 32,32
y empty  9650,22

Mean 
d Comp.

32,30 = gauge

The compensation change thus produced, viz. d Comp. 
= 32.30 = gauge is due to the fact that the volume V 
— 1219.04 + 8.8746 cm3 of the gas content of the whole ap
paratus has been diminished by the volume .tv = 8.8746 cm3 
of the gauge vessel. This reduction of the volume produces 
an increase of the pressure dp which, when the pressure 
in the apparatus is designated p, is determined by

dp
P

8.8746
1219.04 0.007280.

Since here, where the relative changes are small, we 
can put the changes in pressure proportional to the changes 
in compensation we get

Jp  z/ Comp. 
dp d Comp. z/7'• measurement

gauge

and consequently

measurement
gauge

In the example here considered, where measurement — 2.1756 
and gauge = 32.30 we thus get
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Such a determination was made at eleven different pres
sures p, which very nearly formed a geometrical pro
gression, 19082 bar being the highest pressure and 27.15 
the lowest, while the quotient was equal to the square root 
of the ratio between the radii of the two tubes used in 
the apparatus. Judging from repetitions following imme
diately after one another the uncertainty of the values 
found only amounts to a few per mille, but as we shall 
see later, the real uncertainty is much greater, especially 
at low pressures.

Results of the Measurements and their provisional 
Treatment.

The measurements made with the temperatures 0 and 
40 degrees centigrade at various pressures p gave the

// r/

following values for 104 ,p JI

number n = 0 1 2 3 4 5
p' Bar = 19082 9920 5142 2705 1388,9 718,6

104 = 0,0790 0,2528 0,7456 1,648 3,314 4,904
p JI

number n = 6 7 8 9 10
p' Bar = 373,5 193,2 100,76 52,22 27,15
1044^? =

p JI
5,424 4,719 3,481 2,542 1,786

agree very with the
n
h so that

The measured values of //

pressures calculated from the formula p = p0 

interpolations may be made with great certainty which 
give 104^yy, for the pressures p given in the geometrical 

progression. The interpolated values are given in the fol-

closely
©

lowing table, together with some other quantities to be 
mentioned later on.

Vidensk. Selsk. Math.-fys. Medd. VIII, 3. 2
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p to4 io4 - 1 2 Tf
Bar pdT P u p

19082 0,0790 0,0857 0,00502
9904 0,2537 0,2774 0,01626
5140 0,7464 0,8321 0,04878
2668 1,678 1,955 0,1146
1385 3,323 4,155 0,2436

718,7 4,904 6,859 0,4021
373,0 5,422 9,577 0,5614
193,6 4,724 11,583 0,6790
100,5 3,474 13,051 0,7650
52,15 2,542 14,125 0,8280
27,07 1,782 14,833 0,8695

For the further treatment of the observation series we re
mind the reader that for a tube with radius r, in which
there is the pressure gradient dp originating

. dptemperature gradient dT, we have put == f,

the wide tube with radius H we put 

Further it was proved that

dP 
dT

from the

while for

or

where !p and TT are just the quantities that with the 
same designation enter into the tabulated values for 104 ? .

Hence we may consider f—F as the quantity observed at 
different pressures. Our problem is now to lind both f 
and F from the differences observed, which may be done 
by theoretical considerations that have been found tenable 
by previous experiments.
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For a tube with the radius r I have previously1 found 

an expression for f or 

gives

1 Martin Knudsen, Ann. d. Phys. Bd. 33, p. 1444, 1910.

which by inserting the constants

0,02996
r + 0,01191lr2p'

be replaced by R,If r in this expression

from the values thus found we calculate 
/ a Fand from these again 104
P

f'Mnn/l volna CrvT’ 1 FO —

we get F, and 
104^ and 104- 

. . P ' P
104 —, which is a provisionally p

found value for 104—-F— If we compare the values of 
Jp Pfl

104—thus calculated with those observed, we tind, in pFl
the case of the three greatest pressures, deviations not 
amounting to more than 5 p. c. of the values. For a 

pressure of 19082 bar 104 — is calculated to be 0.0067 and 
p F

for a pressure of 9904 bar 104 — is calculated to be 0.0237.

Having 10-— 104— — 104 we find by adding the 
p p p/f

calculated values for 104— to those observed for 104—777, p p.//
that for the pressures

19082 bar we get 104 - = 0.0857
and for . ?

9904 bar we get 10 — = 0.2774.
p

These values have been tabulated and are employed to 
f

calculate the rest of the values given for 104 —.
P

In this calculation we avail ourselves of the fact that 
/’ . Fat the pressure 19082 is equal to — at the pressure 
P r P .
19082« — , that is to say, at the pressure 5140, for which 

11 f Fwe have an observation of 104 /— 104 —. Hence to this p p 
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observation, the tabulated 0.7464, we need only add 0.0857 

to find 10 — valid for the pressure 5140. This proceeding
P

is continued throughout the table so that for each pressure 

we have the corresponding value for 10 —. In view of the 

following calculations and considerations the next column 

in the table is formed, — = 2 7 • — where T is the mean u p
temperature 293.1 at which the measurements were made. 

The quantities — thus calculated indicate how great is the 

effect of the thermal molecular pressure in a tube of the 
given radius r.

0,02996
The formula f = T+TfoHÖlT2/) warrants this pro

ceeding in the case of the large pressures. Hence for a
tube with radius r and pressure p and another with

radius

and 4

R and pressure P we have £   0,02996
p rp + 0,01191 (rp)2

0,02996
RP+ 0,01191 (RP)2' From this we see that f = ?

p p
when rp — RP which was just what was made use of in 
the calculation.

That this proceeding holds good for all pressures may 
be seen by the following consideration. We will take it 
for granted that when a closed circularly cylindrical tube, 
containing a gas at the pressure p, has different tempera
tures at the two ends, the difference in pressure found 
between the two ends in the state of equilibrium will be 
independent of the way in which the temperature varies 
from end to end. From this it follows that when an in
crease of temperature dT is found on the length dl of the 
tube, this will involve an increase of pressure dp, which 
is independent of dl, but determined by other quantities. 
What these are may be determined by considering the
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This quantity is dependent both on the (li

the lube and on

(I) (r, the physical properties of

which enters into the equation so that we

L

of different radii and assume that they all

have a

d7
T

is a pure number the physical proper-

the physical properties of 
of the tube only comprise 

as we just

-77,, the radius r will be the d 1

of which -77, may be a function. d I

dp 
pquantity .

T
mensions of
the gas. Since the dimensions
its length and radius and since the length, 

stated, does not influence

only dimension of the tube
dp

Hence we may put =
dp 

the gas). Since {7,
d I
1

lies of the gas that can be taken into account can only 
be a length L

\Zp 
pcan put ' =d I
T

series of tubes
of them have the same temperature and all contain hydro
gen, their hydrogen content will he determined entirely 
by the dimensions of the tubes and the mean free path Z
of the hydrogen. The quantity L in the above-mentioned
formula may therefore be put identical with Z. If now we

remember that we have pZ = Z15 we get \ and hence 
L Zr

Here Zt is the mean free path of the hydrogen at the 
pressure 1 bar and the temperature T, that is to say, in
dependent of r and p, so the expression shows that when
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r and p vary in such a way that their product is kept 
f

constant — will remain unaltered at constant temperature. 
P

As has been mentioned, the calculations made have been 
based on this rule, and it is important in giving expressions 
for the thermal molecular pressure to keep to the formula

The tabulated quantity — = 2 71— = 2 7’—-^ is thus a 
r u p p d 1

function of alone, and our next problem will be to tind 

an expression for this functional dependency. For the 
solution of this problem it must be remembered that the 

values found in the table for were calculated successivelv, u
so that any inaccuracy in one of the measurements at 
high pressures will make its influence felt at all the lower 
pressures. For these, therefore, all the errors will be added 
up. This unfortunate circumstance may, however, be entirely 
avoided, as will be shown in the following.

Theoretical Considerations in the Formation 
of a Formula for the Thermal Molecular Pressure.
Reynolds’ formula, which was given in the introduction, 

may be arrived at by the following simple kinetic con
sideration. Let iV be the number of gas molecules in each 
cm.3, tn the mass of each molecule, and c the molecular 
velocity, c denotes the mean value of the molecular velo
cities, and c2 the mean value of the squares of the velo
cities. n denotes the number of impacts that is to say, the 
number of molecules which in each second passes through 
a cm.2 coming from one side of it. If the pressure of the 
gas be p, its absolute temperature 7’, and its molecular 
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weight M, the kinetic theory in conjunction with the 
simple equation of state will give the following fundamental 
expressions

p = — Ahne2 and n = vAcr 3 4

and it follows from Maxwell’s law of the distribution of 
velocities that

= c = 14550 |/|.

If we can disregard the effect of the mutual impacts of 
the molecules in the places where the temperature varies 
from place to place, we have, when the state is to be a 
state of equilibrium, that the number of impacts n must 
have the same value everywhere. For let us suppose that 
the two vessels have the absolute temperatures Tr and P2, 
and that the total temperature difference 7\ — T2 is found 
in a single definite cross-section of the communication 
tube. Then, for the molecules coming from one side to
wards this cross-section we have the number of impacts

/q =

have

— A\ cL and for those coming from the other side we
1 —

n2 = ä^2c2' it is presupposed that no more mole-
4

cules pass through the cross-section in one direction than 
in the opposite direction, we must have zq — zq and hence
A\ct = N2c2. From the fundamental equation we see that 
Pi . j NjcD2
P2

and consequently — = Ç1

^2

the difference in temperature 7\—T2 is infinitely small and 
equal to dT, we get the expression

dp 1 d T dp p 1— —------ or —.
p 2 T dT T 2
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This expression can, however, only be expected to be valid 
when we can disregard the number of the mutual impacts 
of the molecules as compared with the number of impacts 
against the walls of the tubes, or, in other words, when 
the cross-section dimensions of the Lube are negligible 
compared with the mean free path Z of the gas molecules. 

If this requirement is not satisfied, — may be expected 
1 (IT P.

to be less than and for a cylindrical tube with
“ (If)

radius r it may be expected that — will decrease when 
2r P 2r .

the ratio — increases. For the case when is small Z Z
compared with 1, I have previously1 given the following 
condition of equilibrium

dp 1 de

Since
c

expression is transformed into

For the correctness of this expression I have previously, 
1. c., endeavoured to give reasons. These do not now seem 
to me to be conclusive. Hence I will for the time being 
substitute an unknown factor for the factor 2 in the de
nominator.

In all cases in which r is not negligible compared 
with Z there will be currents in the tube in the state of 
equilibrium. A current along the wall of the tube from 
the cold to the warm end will cause the pressure at the 
warm end to be greater than that at the cold end, and 

Martin Knudsen, Ann. d. Phys. Bd. 31, p. 223, 1910.
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this gradient of pressure will cause a current to flow along 
the axis of the tube from the warm to the cold end.

For the momentum M received by each surface unit of 
the tube owing to the molecular velocity c varying through 
the tube, I have previously1 given an expression which 
with a slight transcription gives

where denotes the density of the gas al a pressure of 
1 bar and the temperature T, while dl denotes an element 
of the length of the tube. k\ is a quantity which for very 

small values of y may be put equal to 1 and increases 

with increasing values of y to a limit which according to 

previous measurements lies between 2 and 3.
Since

get M =
3

32
1 d
T

For the momentum B received by each

each second when the pressure gradient

surface unit in

produces a dl
current at constant temperature, calculation and experi
ments give

where // denotes the coefficient of viscosity which is con
nected with z by the equation

3zr 0,81 r2 dp
256 0,49 z dl '

Martin Knudsen, Ann. d. Phys. Bd. 31, p. 214, 1910.
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If temperature gradient and current are found at the same 
time, each length unit of the tube will receive the mo
mentum 2 n r (M + B) so that the condition of equilibrium 

will be 2 7T r (M + B) + 7T r2= 0. Hence, by the insertion dl
of M and B we get

dp = _________ 1_________  P
dT Sir tt 0^81 1 r2 2 7” 

3 Åq Z + 16 0,49 At Z2

By a previous1 series of experiments I have shown that

this expression may be assumed to be correct when is

large.
An expression of this form and the

r
for small values of y may be embodied

expression given 

in the following

1

values ofsmall

if we put

will be identical with the above

order of size as 1. For

£
2 71

and it may then be expected that a for 

y will be of the same 

a' = 1, the expression

dp 
dT

mentioned dp 
dT

1
2 7”

If we compare the equation containing a with that into
which Aq enters, we should 

/’
creasing values of y. The 

this requirement

a — a

expect a to decrease with in

following expression satisfies

where /> < c.

Martin Knudsen, Ann. d. Phys. Bd. 33, p. 1435, 1910.
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If we insert this value for a , we get the following general 
formula for the thermal molecular pressure

(1)

The mean free path z is, however, a function of p and T. 
We have z p = Zx where is the mean free path at a 
pressure of 1 bar and the temperature T. For the tempera
ture interval at which my measurements were made the 
temperature dependency of the viscosity of hydrogen is
given by the formula

and since
1 1 A v _ 1 i A y i( T

0,49 1 8 j/?1 0,49 1/{w^273/

where o() is the density of the hydrogen al the pressure 
1 bar and the temperature of melting ice (T — 273 ), we get

1 = P_________
1 I A JäA T Y’1*2 ' 

0,49 |/ 8 |/eoV273/
Putting for hydrogen

we get

A = 8,933

 = 0,08753 p A
1,182

(2)

Determination of the Constants in the General Formula 
for the Thermal Molecular Pressure.

Having tried various formulas I have chosen the one 
given above as that which with the fewest constants agrees
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best with the experimental material at the mean tempera
ture 20.13 centigrade. If we remember that, when describing 
the results of our measurements, we put

we should according to formula (1) be able to put

and

dp 
dT

1 P 
u 2T where u —

r
å

0,08753 • p • r (273y>182

By formation of differences in the table containing — as ' u
a

/• 
function of p and thence of y

A
were found the following

provisional values for the constants a = 2.212, b = 2.85, 
c — 20.0. These constants which must be expected to be 
influenced by the errors due to summation and to the use 
of earlier and uncertain observations, must now be im
proved, these sources of error being avoided. This is done
by returning to the directly observed values 104 ./p 

p z / T given
in the table. From this series a new series is formed by 
multiplication with 10-4-2T, where T is the mean tempera
ture 293.1°. In this way we get a value for 2 

which is regarded as the quantity observed at each single 
pressure.

Forming U from u by replacing r by R we get 
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that is to say, an equation for each of the observations 
of the table. From these equations a, b and c are deter
mined by the method of least squares, and thus we tind

a = 2.46 b = 3.15 c = 24.6.

In this calculation it is supposed that all the measurements 

of 2 T ——, have been made with equal accuracy, so that
P /T

occurring systematical errors will influence the constants.
Hence the result of lhe investigation is that the thermal 

molecular pressure in a circularly cylindrical tube with 
the radius r may be expressed as follows

when putting for hydrogen

1
Z 0,08753 p 7273 \1,182

In the case of such great temperature differences that lhe 
differential formula cannot be directly applied, an inte
gration may be undertaken, the last equation giving

dp 1,182 dT d). 
p ~ T Z

which, inserted in the last but one, gives

dr
2T

If in this we insert lhe value found for u the result will 
be an equation which can easily be integrated. Such an 
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integration between the limits 293°±20° showed that we 
are entirely warranted in applying the differential formula 
without integration within these limits.

In order to investigate how the experimental results 
are rendered by the differential formula with the constants 
found the following table was calculated.

p
Bar

r
Â 

at 20° C.

2r^_
p.PT observed—

calculated
observed calculated

19082 41,22 0,00463 0,00464 — 0,00001
9904 21,39 0,01486 0,01486 0,00000
5140 11,103 0,0437 0,0425 + 0,0012
2668 5,763 0,0986 0,1024 — 0,0038
1385 2,991 0,195 0,196 0,001
718,7 1,552 0,287 0,285 + 0,002
373,0 0,8057 0,318 0,317 + 0,001
193,6 0,4182 0,276 0,278 - 0,002
100,5 0,2170 0,204 0,207 — 0,003
52,15 0,1126 0,149 0,146 4- 0,003
27,07 0,0585 0,105 0,107 — 0,002

From the above table it will be seen that the general 
formula gives a very good representation of the experi
mental results within the range investigated. The differences 
between the observed and the calculated values is of the 
order of 1 p. c. of the observed values except for the ob
servation made at the pressure of 2668 bar, where the 
difference amounts to almost 4 p. c. This may possibly be 
due to an incorrect determination of the pressure which 
is confirmed by the following.

As it would be of interest to investigate other tempera
tures, two other series of experiments were made, simul
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taneously with those between 0° and 40°, at the same 
pressures. In one of these the one bath was scraped ice, 
the other a mixture of carbonic acid and ether. The 
temperature of this mixture was put at —78.5 C. In the 
second series of experiments liquid air was used in one 
bath, while the other was again a mixture of carbonic acid 
and ether. The temperature of the liquid air was deter
mined by means of the usual small floats. In these two 

j f)
series of measurements the quantity 2 T—given in the1 p./l
following tables was again determined. For comparison

with the general formula -—was calculated by inte

gration and 
for 2 T^.

the result subtracted from the observed values

The mean temperature T (absolute) of the 

baths used is also given in the tables, as well as the

values -- calculated from p and T.

T = 233.75°
Ice and Carbonic Acid

T = 138.3°
Carbonic Acid and Liquid Air

p
r
Â

z/p9 7__ —
“ pJT

observed- 
calculated

r
'k

z/p
2 T—— 

pJT
observed—
calculated

19082 53,87 0,0031 + 0,0003 100,18 0,0010 + 0,0002
9920 28,00 0,0093 0,0000 52,08 0,0031 + 0,0001
5142 14,52 0,0288 + 0,0007 27,00 0,0098 — 0,0001
2705 7,636 0,067 — 0,005 14,20 0,025 — 0,003
1389 3,921 0,153 — 0,001 7,292 0,071 — 0,004
718,6 2,029 0,255 + 0,004 3,773 0,151 — 0,007
373,5 1,054 0,313 + 0,004 1,961 0,254 + 0,001
193,2 0,5454 0,293 + 0,001 1,014 0,301 0,000
100,8 0,2844 0,227 — 0,001 0,529 0,274 — 0,002
52,22 0,1474 0,170 + 0,009 0,274 0,217 — 0,005
27,15 0,0766 0,117 4- 0,001 0,143 0,157 + 0,008
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The differences between the observed and the calculated 
values are not any greater than might reasonably be ex
pected. A systematic course in the differences only appears 
in the series with carbonic acid and liquid air and is not 
marked enough to give reasons for a change of the con
stants in the general formula. The greatest percentage 
difference between the observed and the calculated values 
appears in both series at a pressure of 2705 bar, that is 
to say, at the same pressure at which the greatest deviation 
in the series 10 -ice was found. This would seem to 
indicate that an error has crept in in the determination 
of the pressure, which is not, however, so great that we 
should feel justified in leaving the observations at this 
pressure out of consideration.

In order to investigate the thermal molecular pressure 
at higher temperatures a series of experiments were con
ducted at a mean temperature of abt. 260°. The values
observed for 2 7’-^-— here proved to be p /l I
than those calculated by the formula 

abt. 10 p. c. lower 

given above. For
pressures higher than 1000 bar this discrepancy is chiefly

/ T Y
\973/ *S ROt tempera
exponent 0.5832 instead of 0.682 would

due to the fact that the temperature dependency given in
/ 7’ \ 0.682

the formula jy = r/0

tures. Breitenbach’s1 
give a considerably better correspondence. At lower pres
sures such an alteration of the exponent will not, how
ever, greatly alter the calculated values, and the explanation 
may be perhaps that the harmful adsorption phenomena 
make their influence more felt at high than at low tempera
tures because the adsorption processes take place more 
rapidly in the first case.

Breitenbach, Ann. d. Phys. Bd. 67, 1899, p. 817.
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In the above I have mentioned that as a guide in the 
formation of the general empirical differential formula I 
used the theoretical expression

which I thought must hold good when r is very small 
but not negligible compared with 2. For this case the 
empirical formula gives

dp = 1 P
(FF r 2T.1 + 2 a — z

If the theoretical formula were correct, the measurements 
should thus have given a — 1. They have, however, given 
a = 2.46, which is a considerable discrepancy. Whether 
this is due to an incorrect determination of the quantity a 
on account of adsorption phenomena or whether some 
error attaches to the theoretical formula I dare not say.

In order to elucidate this latter question, a theoretical 
derivation of the formula ought to be made, based solely 
on the kinetic theory of gases. Such a derivation would 
presumably be very difficult in the general case, but would 
seem feasible here where we are considering the case 
of r being small compared with 2. In case this calculation 
were made and in case it would in future be possible 
to avoid the adsorption phenomena so that a could be 
determined with sufficient accuracy, this method presents 
a direct measurement of 2, this quantity, the mean free 
path, of which it is now hardly possible to give an exact 
definition, would in that case be directly compared with 
the radius r of the tube, and we should have another

Vidensk. Selsk. Math.-fys. Medd. VIII, 3. 3



34 Nr. 3. Martin Knudsen:

means of obtaining information of the direction in which 
the molecules moved after the so-called mutual impacts.

With regard to the influence of the adsorption the fol
lowing remark may be made. In the way the apparatus 
was arranged we can hardly suppose that it contained 
mercury in other places than in the trap which was cooled 
in liquid air. It may be supposed, however, that there 
will be adsorbed water all over the walls of the glass, 
which will pass at an extremely slow rale towards the 
trap with liquid air. This passage will presumably be so 
slow and regular when the temperature of the apparatus 
is kept constant that the hydrogen pressure will practically 
be the same throughout. Otherwise when the joint of a 
tube is heated or cooled. In the former case water is 
liberated from the walls, in the latter case water is ad
sorbed. Both processes will produce currents which are 
different in the wide tube from those in the narrow tube, 
and these currents may be expected to produce differences 
in pressure which will become sources of error in the 
measurements.

Finally, it cannot be precluded that the hydrogen it
self may to some extent be adsorbed to the glass wall. 
Even if such an adsorption is not appreciably altered at 
the small differences of temperature employed in the ex
periments, it will, however, cause 2 to be smaller close to 
the wall of the tube than it is at the axis of the tube, 
and thus explain that the constant a has been found 
greater than 1.

It might perhaps be supposed that the harmful effect 
of the adsorption phenomena would appear less at high 
than at low temperatures. My measurements do not indicate 
this, however. The adsorption phenomena cause currents
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in the tubes lasting at least twenty-four hours and pro
bably several days and nights, so that a stationary con
dition is not obtained within a reasonable time. Hence it 
is a reasonable supposition that even if the adsorbed 
masses are much smaller at high than at low tempera
tures, the liberation of adsorbed substance at increased 
temperature will take place at a much quicker rate with 
a high than with a low temperature, and produce just as 
strong or perhaps stronger currents in the tubes.

In the execution of the above-described measurements 
and calculations Mr. K. Thiesen and Mr. G. Nørgaard have 
rendered much valuable assistance for which I offer sincere 
thanks. My grateful acknowledgments are also due to the 
directors of the Carlsberg Fund who have granted financial 
aid without which it would have been impossible for me 
to carry through these investigations.

Forelagt paa Mødet den 6. Maj 1927. 
Færdig fra Trykkeriet den 30. Juni 1927.
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